
IR Code Viewer
For the 2022 BEST game “Made 2 Order”

This is a simple program that works with an Arduino Uno plus a BEST IR RCVR to display
the single byte codes transmitted by a team robot using the BEST IR XMTR. Use it to see the codes
your team’s robot is actually sending and verify that the IR Transmitter to Receiver link is working.

The program will receive the codes and display them on the Arduino IDE’s Serial Monitor
like this:

Hardware Required
To use this program you will need the following hardware:

• A PC running the Arduino IDE

• An Arduino Uno

• A BEST IR RCVR (you built this alongside your XMTR but don’t need it on your robot)

• 3 male – female breadboard wires (to connect BEST IR RCVR to Arduino Uno)

• A USB cable to connect the Arduino Uno to your PC

Circuit Hookup
Connect the PC, Arduino Uno, and BEST IR RCVR together as follows:

• Use a breadboard wire (ideally black) to connect any GND of the Uno to the IR RCVR pin
closest to the large blue capacitor.

• Use another breadboard wire (ideally red) to connect the next pin on the IR RCVR to any 5V
pin of the Uno.

• Use the third breadboard wire (ideally a third color) to connect the third pin on the IR RCVR
to Digital connection 10 of the Uno.

• The fourth pin on the IR RCVR, farthest from the large blue capacitor, remains unconnected.
• Use the USB cable to connect the Uno to your PC.

Load and Use the Program
Cut & paste the program from the Appendix into a new project in the Arduino IDE. From

there upload it to the Uno. It should start running in a few seconds.

To see the output you will need to open the serial monitor. In the Arduino IDE this is menu
item “Tools” –> “Serial Monitor”. Make sure the serial monitor is set to 9600 baud.

Now aim the IR XMTR on your robot at the IR RCVR sensor. As your robot sends codes
they should be displayed in your PC’s serial monitor window.

Appendix: The Program

/*
 23Feb22 Written by Steve Marum
 Target device is Uno

 For team use testing their robot's IR transmitter.
 Receives IR signals using the BEST IR RCVR.
 Flashes LED_BUILTIN when a character is received over the IR link.
 Displays all codes received by the IR RCVR on the Arduino's serial monitor.
 Shows hex code and description of the code.
 Invalid codes are also displayed and flagged.
 */

// We are using SoftwareSerial to receive the IR signal.
// The built-in serial port is used to send to the Arduino IDE serial monitor.
#include <SoftwareSerial.h>
#define rxPin 10
#define txPin 11
SoftwareSerial IRreceive(rxPin, txPin); // Note: only certain Mega pins can be used.

// variables will change:
int IRrcv; // variable to hold character received via IR link

void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);

 // initialize software UART pins & initialize SoftwareSerial
 pinMode(rxPin, INPUT_PULLUP);
 pinMode(txPin, OUTPUT);
 IRreceive.begin(600);

 // initialize console serial communication at 9600 bits per second:
 Serial.begin(9600);
}

void loop() {
 // Turn on LED_BUILTIN if a byte is received
 IRrcv = IRreceive.read();
 if (IRrcv != -1) digitalWrite(LED_BUILTIN, HIGH); // LED on
 else digitalWrite(LED_BUILTIN, LOW); // LED off
 // Flush the serial buffer. Read buffer until -1 (empty signal) is detected
 while (IRreceive.read() != -1);

 delay(10); // This seems to be needed for SoftwareSerial to work correctly!?!

 if (IRrcv != -1) {
 Serial.print("Hex code = ");
 Serial.print(IRrcv, HEX);
 Serial.print(" ");
 switch (IRrcv) {
 case 0xAA:
 Serial.println("Reset field");
 break;
 case 0xF0:
 Serial.println("Test IR link");
 break;
 case 0x33:
 Serial.println("Drive - Rotation - Lift");
 break;
 case 0x55:
 Serial.println("Drive - Lift - Rotation");
 break;
 case 0x66:
 Serial.println("Rotation - Drive - Lift");
 break;
 case 0x5A:
 Serial.println("Rotation - Lift - Drive");
 break;
 case 0x3C:
 Serial.println("Lift - Drive - Rotation");
 break;
 case 0xCC:
 Serial.println("Lift - Rotation - Drive");
 break;
 case 0x99:
 Serial.println("Drive speed range low");
 break;
 case 0xA5:
 Serial.println("Drive speed range medium");
 break;
 case 0xC3:
 Serial.println("Drive speed range high");
 break;
 case 0x69:
 Serial.println("Rotation speed range low");
 break;
 case 0x96:
 Serial.println("Rotation speed range medium");
 break;
 case 0x0F:
 Serial.println(" Rotation speed range high");
 break;
 default:
 Serial.println("***** Invalid code *****");
 }
 }
}

